closed Self-intersection in a blow-up
M= complex surface
A (complex) blowup Blp(M) replaces PFM with
the set of complex kines in TpM =
$$\sigma^2$$
,
a set = αP^1 .
Blowup is characterized by: \exists "blow-down
map" Blp(M)
 $\exists T$ Such that
 $\exists T$ Such that Such tha

Then
$$e^2 := e \cdot e := the alg. intersultion #
 $\sum \pm 1$
ZERAE$$

Proposition: For any closed, conflex surface M, and any PEM, let e= exceptional divisor of Blp(m) ->M. Then the alg. int. # of e in M is $e^2 = -1$

Cos: C is rigid : it cannot be honotoped to any complex e'cm with ethe'.

ProvF#1: Do it by hand, using the fact Blp(m) = M # Gp2 differ Proof #2 (for M=R2, For Simplicity)

BLACK)

$$T$$
 $T'(A) = A$
 T $S'(C, P \notin A, P \in L$
 T $S'(C, P \notin A, P \in L$
 P^{2} $P \downarrow A$ $Let L' \subset B L p(P^{2})$ by
 $the Strict transform of$
 $L:$
 $L':= \pi^{-1}(L-P)^{2m} \cong P'$
 $C [\pi^{-1}(A)] \cdot [2d] = 0$ Since $\pi^{-1}(A) \land P = \emptyset$.
 $\pi^{-1}(L) = L' \cup P \subseteq S$
 $[\pi^{-1}(L)] = [L'] + [P]$
 $T'(L) = [L'] + [P]$
 $T'(L) = [L'] + [P]$
 $T'(L) = [L] = 1$
Now $[A] = [L] \ge H_{2}(P^{2}; Z) \leq 0$
 $[\pi^{-1}(A)] = [\pi^{-1}(L)] = [P] + [L'] (K)$
 $and so = [\pi^{-1}(A)] \cdot [P] = [P] + [L'] \cdot [P]$
 $= [P] \cdot [P] + [L'] \cdot [P]$
 $= [P] \cdot [P] + [L'] \cdot [P]$