closed Self-intersiection in a blow-up
$M=$ complex surface
A (Complex) blowup Bl ohM) replaces p\&M with the set of complex linus in $T_{p} M \cong C^{2}$, a set $\cong \mathbb{Q}$!
Blowup is characterized by: J" blow-down map" $B l_{p}(m)$

$$
\bigsqcup_{M}^{\pi}
$$

Such that

1. $\left.\pi\right|_{B l_{p}(m)-\pi^{-1}(p)}$ is an \cong of complex mnflds.
2. $C:=\pi^{-1}(P) \cong \subset \mathbb{R}^{\prime} \subseteq B l_{p}(M)$, calve the exceptional divisor of the blowup.

Thus C is an embedcled 2 -sphere in the closed, oriented 4 -manifold $B l_{p}(M)$. as such, it has a self-intersection number $e \cdot e$, defined via:
Perturb e off itsalf to a surface écM s.t. e he'.

$$
-1-
$$

Then $e^{2}:=e \cdot e:=$ the alg. intersection \#

$$
\sum_{z \varepsilon e n e^{\prime}} \pm 1
$$

Proposition: For any closed, complex Surface in, and any p\&M,
let $e=$ exceptional divisus of $B \operatorname{lp}(M) \rightarrow M$.
Then the alg. int. $\#$ of e in M is

$$
e^{2}=-1
$$

Cor: e is rigid : it corot be honoteped to any complex e'cM with e the'.

Proof \#1: Do it by hand, using the fact

$$
B l_{p}(M) \underset{\text { differ }}{\cong} M \# \overline{\mathbb{C} \mathbb{P}^{2}}
$$

proof \#2 (for $M=\mathbb{P}^{2}$, for simplicity)
choose lines $\left(\cong \mathbb{P}^{\prime}\right) \quad L, A \subset \mathbb{P}^{2}$ s.t. $P \notin A, P \varepsilon L$
\mathbb{R}^{2}

Let $L^{\prime} \subset B l_{p}\left(\mathbb{P}^{2}\right)$ be the Strict tranform of L:

$$
L^{\prime}:={\overline{\pi^{\prime}}(L-P)}^{\text {Zor }} \cong \mathbb{R}^{\prime}
$$

- $\left[\pi^{-1}(A)\right] \cdot[d]=0$ sinca $\pi^{-r}(A) \wedge e=\phi$.
- $\pi^{-1}(L)=$ L'ue so

$$
\left[\pi^{-1}(L)\right]=\left[L^{\prime}\right]+[e]
$$

$$
\text { - }\left[L^{\prime}\right] \cdot[e]=1
$$

Now $[A]=[L] \& H_{2}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$ so

$$
\begin{equation*}
\left[\pi^{-1}(A)\right]=\left[\pi^{-1}(L)\right]=[e]+\left[L^{\prime}\right] \tag{若}
\end{equation*}
$$

and so $0=\left[\pi^{-}(A)\right] \cdot[C] \frac{\overline{b y}(x)}{}([C]+[L]) \cdot[(c]$

$$
=[Q] \cdot[Q]+[L]] \cdot[Q]
$$

$$
\begin{aligned}
\Rightarrow\left[(c]^{2}=-1\right. & =[\varangle] \cdot[a]+1 \\
& -3-
\end{aligned}
$$

